
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 12, DECEMBER 2025 14347

Distributed Clock Phase and Frequency
Synchronization in Half-Duplex TDMA Networks

Itay Zino , Ron Dabora , Senior Member, IEEE, and H. Vincent Poor , Life Fellow, IEEE

Abstract—High clock synchronization accuracy across the
nodes in wireless networks is a prerequisite for facilitating
high-rate data transmission. Accurate clock synchronization is
a particularly challenging goal in networks implementing time
division multiple access (TDMA) via half-duplex (HD) communi-
cations, as in such networks the updates are temporally sparse,
and consequently, clock frequency differences induce significant
phase drifts between subsequent updates. Thus, accurate clock
synchronization in HD TDMA networks requires synchronizing
both clock phases and clock frequencies across the nodes,
which is the focus of this work. We consider pulse-coupling
(PC)-based distributed clock synchronization, where each node
implements its synchronization processing independently, based
on its own received clock phases and power measurements. These
measurements are then weighted to generate the phase and the
frequency correction signals. We first analyze this synchroniza-
tion framework and motivate decoupling the phase and frequency
updates. We then analyze the resulting decoupled structure and
derive the asymptotic synchronization accuracy, which is shown
to be a function of the weighting coefficients and the unknown
propagation delays. This motivates on-line learning of the opti-
mal weights. To that aim, we introduce a novel initialization
scheme with unsupervised online training. Simulation results
show that the new scheme exhibits excellent synchronization
accuracy, which is significantly better than previously proposed
schemes, as well as robustness to clock resets and to node
mobility.

Index Terms—Distributed synchronization, deep neural net-
work (DNN), unsupervised learning, clock synchronization, time
division multiple access (TDMA), pulse coupling (PC).

I. INTRODUCTION

FACILITATING high data rates in wireless networks
requires accurate time coordination between the nodes

in the network. Generally, clock synchronization schemes
implement either packet-coupling or pulse-coupling (PC). In
packet-coupling, time-stamps are encoded into the data packets
at each node, which are then transmitted to neighboring nodes
[1]. The receiving nodes decode the packets to obtain the time

Received 9 April 2025; revised 26 July 2025; accepted 26 August 2025.
Date of publication 4 September 2025; date of current version 23 December
2025. The work of I. Zino and R. Dabora was supported in part by the
Israel Science Foundation under Grant 584/20 and by the Israel Ministry of
Economy via the 5G-WIN Consortium. The work of H. V. Poor was supported
in part by an Innovation Grant from Princeton NextG, and by the U.S National
Science Foundation under Grants CNS-2128448 and ECCS-2335876. The
associate editor coordinating the review of this article and approving it for
publication was J. Kang. (Corresponding author: Ron Dabora.)

Itay Zino and Ron Dabora are with the School of Electrical and Computer
Engineering, Ben-Gurion University of the Negev, Be’er Sheva 8410501,
Israel (e-mail: itayzin@post.bgu.ac.il; daborona@bgu.ac.il).

H. Vincent Poor is with the Department of Electrical and Computer
Engineering, Princeton University, Princeton, NJ 08544 USA (e-mail:
poor@princeton.edu).

Digital Object Identifier 10.1109/TCOMM.2025.3606416

stamps, based on which they update their own clocks. While
packet-based synchronization has received significant atten-
tion, [2], [3], [4], such schemes generally suffer from random
processing delays at the nodes and high-power consumption
due to the required processing, which makes them less suit-
able for facilitating low-power, low-complexity accurate time
synchronization [5]. In PC-based synchronization, [5], [6],
the nodes transmit unique signature sequences. The receiving
nodes use the signatures to identify the senders, extract the
timing information from the signatures’ receive-time stamps
and estimate the receive signatures’ powers. The nodes then
process their receive-time stamps and receive powers to adapt
their clocks.

Another critical consideration in synchronization schemes
is whether measurement processing is distributed or
centralized. In centralized processing the information
from all nodes is jointly processed at a fusion center,
which facilitates computation of optimal clock updates.
Centralized processing can utilize larger computational
resources by designated nodes with appropriate processing
power.

As an example, in [7] a global least squares skew and
offset estimation was proposed. The main weaknesses of cen-
tralized processing are the communications overhead, delays,
and power consumption associated with transporting timing
information across the network. One approach to decreasing
the required resources and overhead is through synchronizing
among a small number of users at each time. For example,
for long range (LoRa) networks, a synchronization scheme
between the gateway and the nodes, where processing is done
at the gateway, was proposed in [8], along with a lightweight
version which could be applied to synchronization between
end nodes. The computational aspects associated with cen-
tralized processing are considerably simplified when applying
distributed processing in which each node processes only
its local information. Here, there are two main approaches:
Synchronization with the clock of a single time source or
simultaneous synchronization among the clocks. A simple
realization of the former is synchronizing with the clock of the
Global Positioning System (GPS). Additional approaches for
synchronization to a single clock include Reference Broadcast
Synchronization (RBS) [9] and the message flooding protocol
[10]. Yet, in many applications of distributed synchronization
for ad-hoc wireless networks, it is preferable to avoid relying
on a single node, namely the nodes operate independently to
reach a consensus on the network’s clock period and offset
among the nodes.

0090-6778 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0006-1805-7648
https://orcid.org/0000-0001-8486-1243
https://orcid.org/0000-0002-2062-131X


14348 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 12, DECEMBER 2025

A third important factor that affects the performance of
synchronization algorithms is whether the network’s channel
access scheme is full-duplex (FD) or half-duplex (HD). In FD
access, nodes can transmit and receive simultaneously. Thus,
when FD is implemented, the nodes obtain frequent timing
measurements, thus, the phase deviations between updates,
induced by clock frequency differences, are very small, facil-
itating synchronization by correcting only the clocks’ phases,
leaving the clocks’ frequencies unsynchronized, e.g., [5], [11],
[12]. However, implementing FD access requires specialized
design of the transmission and reception circuits as well
as dedicated processing, which may significantly impact the
cost of the transceivers at the nodes. In contrast, in HD
access, as only a single node transmits at any given time,
transceiver design is simpler, which translates into low-cost
units. However, the temporal sparsity of the clock measure-
ments in HD access requires synchronizing both the clocks’
phases and the clocks’ frequencies at the nodes, in order to
maintain small clock phase deviations between updates. In this
work we study clock synchronization in networks operating
subject to a strict resources budget. We consider distributed
PC-based global clock synchronization for HD time division
multiple access (TDMA) networks, which have a wide range
of applications including aerial networks [13], cooperative
navigation in wireless networks [14], sensor networks [15],
automotive radar [16], and distributed antenna arrays [17].

A. Related Work

A common approach for distributed clock synchronization
in wireless networks is based on implementing a phase-locked
loop (PLL) at each node, as considered in [5] and [12] for FD
channel access. In this approach, clock phase measurements
are weighted and filtered to generate a phase correction signal
for the node’s clock. PLL-based clock synchronization was
also considered in our previous work, [11], which focused
on FD access using only clock phase corrections. The work
[11] proposed a model-based learning scheme, which uses
the loop structure while learning the loop weights, resulting
in a dramatically improved performance compared to [5]
and [12]. Differently from these works, in the current work
we focus on HD communications and show that it requires
implementing both period and phase updates. The work [17]
considered frequency synchronization in the HD regime with
randomly transmitting nodes, for which a simple algorithm
was proposed without presenting performance analysis. Pre-
vious works that have considered distributed synchronization
of both clocks’ frequencies and phases are essentially based
on modeling the clocks as affine functions: In [18] an inter-
active algorithm for skew and offset estimation based on
belief propagation was proposed and analyzed, where each
pair of nodes first exchanges a fixed number of time-stamp
messages, and subsequently distributed estimation is applied.
The work [19] proposed to iteratively eliminate the phase
offsets while driving all skews to the same value, and [20]
proposed estimating the skews and offsets via a least-squares
approach. Note that [19] considered packet-coupling; however,
following, e.g., [21], this scheme can also be applied based
on pulse timings. Moreover, as the algorithm assumes that

each node measures interference-free time stamps from the
other nodes, the algorithm implicitly assumes HD operation,
[19], [21]. We also note that [19], [21] assumed that the
transmissions used for synchronization take place within a
relatively small time interval, while a TDMA access regime, as
considered in the current work, introduces large delays which
can result in poor synchronization accuracy. Another related
aspect is the analytical performance derivation of synchroniza-
tion algorithms operating in the HD regime. We note that the
analysis of consensus algorithms typically assumes full-duplex
operation and considers first-order filtering, e.g., [22]. Analysis
of distributed least-squares with coordinate descent is provided
in [23], which converges to the optimal least-squares solution
when there are no propagation delays.

In the current work we consider PLL-based synchronization
of both clocks’ phases and frequencies via a distributed PC-
based scheme. We address both performance analysis and
algorithmic implementation. In the following, we elaborate on
these contributions.

B. Main Contributions and Organization

Main Contributions: We methodically study PLL-based
distributed clock synchronization in HD TDMA networks. The
contributions encompass three aspects: (1) Algorithmic struc-
ture, (2) analytical performance derivation, and (3) machine
learning (ML)-aided implementation. In the context of the
algorithmic structure we first demonstrate that for HD TDMA
networks, both clock phases and periods have to be synchro-
nized to maintain small clock phase differences across all
TDMA slots. We next establish analytically that when the
phase and period updates are not decoupled, a zero error
stationary point does not exist, hence, the phase updates
have to be decoupled from the frequency updates in order to
achieve synchronization of both clock periods and phases. We
conclude the algorithmic structure contribution with a proposal
of a nested loop structure implementing cyclic decoupled
phase and period updates across three TDMA frames, based
on weighting the measured phase offsets.

The analytic contribution of this work is the performance
analysis of a nested synchronization loop in which the pro-
cessing rate is slower than the incoming symbol rate and
the updates are decoupled. It is shown that a nested loop
can perfectly synchronize the period even in the presence
of propagation delays and low-rate updates, however, the
unknown propagation delays induce an inherent clock phase
error which depends on the values of the propagation delays
as well as the weights. It is clarified that as the propagation
delays are unknown at the nodes, it is not possible to a-priori
determine the optimal weights. This conclusion motivates our
third contribution, in which we propose an online weights
determination scheme.

Specifically, the contribution regarding ML implementation
includes the proposal of a low-complexity deep neural network
(DNN)-aided weights computation which is trained online,
locally, after deployment, in an unsupervised manner, with a
novel initialization procedure. As such, training accounts for
the propagation delays which were shown in our analysis to be

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



ZINO et al.: DISTRIBUTED CLOCK PHASE AND FREQUENCY SYNCHRONIZATION IN HD TDMA NETWORKS 14349

the inherent limiting factor in distributed clock synchroniza-
tion. Comparing the performance of the proposed scheme with
the state-of-the-art we observe the significant gains offered by
our proposed novel approach.

Organization: The rest of this work is organized as follows:
Sec. II details the clock model and the network setup. Sec. III
presents the nested loop structure with decoupled updates, and
Sec. IV analytically derives its asymptotic performance as a
function of the weights and the propagation delays. Sec. V
details the proposed DNN-aided algorithm and the associated
training scheme. Section VI presents simulation tests and
discussion. Lastly, Section VII concludes the work.

Notation: Let R and Z denote the sets of real numbers
and of integers, respectively. We denote vectors with boldface
letters, e.g., X and sets with calligraphic letters, e.g., X .
x ∼ U[a, b] denotes that x was selected according to a uniform
distribution over the interval a ≤ x ≤ b, a, b ∈ R, and
N(µ, σ2) denotes the normal distribution with mean µ and
variance σ2. We use (k modN) ≡ ((k))N to denote the
modulo N operation. We use IN and 0N to denote the N ×N
identity matrix and the N × N all-zero matrix, respectively.
Square brackets denote the discrete-time (DT) indices, X ← Y
denotes that Y is stored in X, and ′\′ denotes the set difference
operand.

II. PRELIMINARIES: DISTRIBUTED PULSE-COUPLED TIME
SYNCHRONIZATION FOR WIRELESS NETWORKS

A. Network and Clock Models

We consider a network with N nodes, indexed by i ∈
{1, 2, . . . , N} , IN . Each node i has its own clock. As the
frequency of a clock oscillator can vary within a limited range,
then, w.l.o.g. we define a reference period Tcom, and measure
the periods of the clocks in the network w.r.t. Tcom. At time-
slot interval k ∈ Z+, the period of node i’s clock is expressed
as T prd

i [k] = Tcom+Ti[k], where Ti[k] denotes the clock period
offset w.r.t. the common reference Tcom at time-slot interval
k ≥ 0, at node i. Using the common assumption of ignoring
phase noise, e.g., [5], the clock time at node i, φi[k], also
referred to as the clock phase, can be expressed as

φi[k + 1] = φi[k] + Tcom + Ti[k], k ≥ 0. (1)

In this model, φi[0] and Ti[0] denote the clock time and clock
period offset at node i at startup. This model appropriately
represents the clock tick times which determine the trans-
mission times in HD TDMA wireless networks. Note that
the clock values are real-valued, and the discrete index k
represents the time slot interval number. After startup, the
nodes begin transmitting their signatures. In accordance with
the HD TDMA operation, at the k-th transmission interval,
node i = ((k))N + 1 transmits its signature at time φi[k] and
the remaining N − 1 nodes receive.

Each receiving node assigns a time stamp and a received sig-
nal power value to each received signature. Consider reception
at node j 6= i: Let qj,i denote the propagation delay between
nodes i and j. This propagation delay is unknown at the nodes.
The receive time stamp node j assigns to node i’s transmission
at the k-th time interval, s.t., i = ((k))N + 1, is the time node

Fig. 1. TDMA update cycle with N = 4: The white blocks (also denoted
with ‘T’) mark the transmitting node whose clock times are measured at the
receiving nodes (shaded blocks denoted with ‘R’) at the ν-th TDMA frame.
The node index indicates its order within the TDMA transmission cycle.

Fig. 2. Node placement for the representative scenario. Nodes are denoted
by circles and links over which the signal is received above the reception
threshold are denoted by lines. Parameters are detailed in Footnote II-B.

j observed the k-th transmission relative to the time at node
j at the k-th interval, i.e., with i = ((k))N + 1, node j 6= i
measures node i’s time stamp as

∆tj,i[k] = φi[k] + qj,i − φj [k].

We emphasize that ∆tj,i[k] is a measured quantity at node j
and not a computed quantity, since both φi[k] and qj,i are
unknown at node j. In addition to ∆tj,i[k], each receiver
also measures the received signature’s power. Let Pj,i[k]
denote the power of the signature from node i measured
at node j. Thus, the overall information collected by node
j during the ν-th TDMA frame is the set Mj(ν) ,{
Pj,i[k],∆tj,i[k]

}ν(N+1)−1
k=νN,((k))N 6=j−1

. This is demonstrated with
N = 4 in Fig. 1, where the white block marks the node
whose signature is observed at the shaded nodes during the
ν-th TDMA frame.

In the HD regime, clock correction is applied once in a
TDMA frame. In this work we assume the updates are applied
at the end of a TDMA frame, i.e., after all nodes completed
a transmissions cycle since their last update, which occurs at
time interval k s.t. ((k))N =N − 1. At these k indices each

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



14350 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 12, DECEMBER 2025

node j ∈ IN independently processes its received information,
Mj(ν), to generate correction signals applied to update its
TDMA clock period and clock phase. In this work we consider
strongly connected network configurations [12], in which there
is a path between every pair of nodes in the network, possibly
going through intermediate nodes, see Fig. 2.

B. Scenario Parameters and Performance Measures

We use scenario parameters that represent practical deploy-
ments. We set the network size to N = 16 nodes, deployed
in a square area with a side-length of 10 [Km]. We assume
2-ray propagation where each node has an antenna whose
height is 1.5 [m], transmit power of 33 [dBm], and a reception
threshold of Pth = −114 [dBm], [24], [25], [26]. To visualize
the impact of these parameters of the network, Fig. 2 depicts an
instance of a randomly generated node deployment scenario1

in which 30% of the links carry signals that are received
at their respective destinations above the reception threshold.
These links, referred to as the active links, are marked by the
lines in Fig. 2. The network in Fig. 2 is referred to as the rep-
resentative scenario.2 The performance in Sec. VI is reported
using statistics based on 800 network realizations, obtained
by randomly and uniformly placing nodes within the network
area, verifying that about 30% of the links are active. For
generating the clocks at the nodes, the nominal duration of the
time-slot is set to Tnom = 5 [msec], and the respective nominal
TDMA frequency is fnom = 200 [Hz]. As in [24], we model
clock uncertainty by generating the initial clock frequency fi
at each node i randomly, according to a uniform distribution
fi ∼ U

[
1

Tnom
(1− 150 · 10−6), 1

Tnom
(1 + 150 · 10−6)

]
, which

corresponds to a clock accuracy of 150 [ppm]. The initial
TDMA slot period at node i is obtained as T prd

i [0] = 1
fi

. Each
node is then assigned a randomly generated initial phase φi[0],
φi[0] ∼ U

[
0, T prd

i [0]
]
.

1) Performance Measures: We define the normalized phase
difference (NPD) at node i, denoted by NPDi[k], to be the
difference between the clock phase at node i and the clock
phase at node 1, divided by the instantaneous mean period,
denoted by T̄ [k] , 1

N

∑N
i=1 T

prd
i [k]:

NPDi[k] =
(
φi[k]− φ1[k]

)
/T̄ [k]. (2)

Network synchronization accuracy is measured via the NPD
range (NPDR), which is the maximal clock phase difference

1The coordinates of the nodes, the initial periods, and the initial phases
for the representative scenario are {(xi[Km], yi[Km], φi[0], Ti[0])}16i=1 =[
(6.015, 2.6, 0.0021, 0.049996285), (2.366, 8.8, 0.0014, 0.049998529),

(1.94, 7.523,−0.0011, 0.050004372), (9.151, 0.959,
−0.0007, 0.049998932), (5.51, 8.741, 0.0004, 0.049995185), (7.221,
9.313,−0.0003, 0.049998797), (8.205, 7.532, 0.0013, 0.050001951),
(0.62, 9.476,−0.0020, 0.049994327), (2.183, 3.372,−0.0004,
0.050000753), (5.556, 8.739,−0.0021, 0.050007868), (2.896, 1.758,
0.0014, 0.050005321), (8.865, 5.709,−0.0016, 0.049995986), (1.532,
0.663, 0.0006, 0.050005278), (9.165, 1.992,−0.0023, 0.050005455),
(6.479, 0.218, 0.001, 0.049994403), (0.354, 9.823, 0.0022, 0.049996557)

]
.

2This scenario is used only for illustrating phase trajectories throughout
the manuscript. Note that our conclusions are drawn based on analysis and
statistical simulations, and do not rely on a single scenario.

Fig. 3. Clock phase trajectories for the classic algorithm [5] (synchronizing
only the clock phase while the period remains fixed) tested for the represen-
tative HD TDMA deployment of Fig. 2. Each line depicts the clock phase
trajectory at one node out of the N = 16 nodes.

between any pair of clocks in the network, normalized to the
instantaneous mean period, T̄ [k]:

NPDR[k] ,
(

max
i1∈IN

φi1 [k]− min
i2∈IN

φi2 [k]
)
/T̄ [k]. (3)

As the NPDR is a normalized quantity that represents the
phase spread relative to the nominal period, hence, it is unit-
less.

III. THE ALGORITHMIC STRUCTURE: DECOUPLED
NESTED UPDATES FOR HD TDMA NETWORKS

We focus on distributed algorithms operating independently
at each node, updating the clock at the node based on local
measurements.

A. Mitigating Phase Drift via a Nested Phase and Frequency
Synchronization Loop

As mentioned in Sec. I, the classic scheme of [5] operates
to achieve network clock synchronization by updating only the
clocks’ phases, leaving the periods of the clocks at the nodes
unsynchronized. Applying the classic scheme [5] to networks
employing HD TDMA access, where phase correction is
applied at the end of a TDMA frame, results in clock phase
drifts between corrections. To visualize these phase drifts,
we begin by recalling the classic scheme [5]: Define the
neighborhood set of node i, N (i), to contain all the nodes
j ∈ IN , j 6= i, whose signatures are received at node i with
power higher than Pth. As the scheme in [5] does not vary the
clocks’ periods, they remain fixed at {T prd

i [0]}Ni=1. The clock
update at node i at time-slots k = νN , ν ∈ Z+ is now given
as (see [5, Eqn. (16)])

φi[k+1] = φi[k]+T prd
i [0]+ε0

∑
j∈N (i)

αi,j ·∆ti,j [k+j−1], (4)

where ε0 denotes the loop gain, and the αi,j’s are prede-
termined coefficients set as in [5, Eqn. (8)]; see also Sec.
IV-B.1. At k 6= νN , the clock update is φi[k + 1] =
φi[k] + T prd

i [0]. Fig. 3 depicts sample clock phase trajectories

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



ZINO et al.: DISTRIBUTED CLOCK PHASE AND FREQUENCY SYNCHRONIZATION IN HD TDMA NETWORKS 14351

obtained with the classic algorithm (4) applied in the HD
regime, for the representative network detailed in Fig. 2 with
parameters specified in Footnote II-B. The clock phase values
are plotted w.r.t. to the mean instantaneous phase, defined as
φ̄[k] , 1

N

∑N
i=1 φi[k]. It is observed that the lack of frequency

synchronization induces significant phase drifts across the
nodes within a TDMA frame.

A straightforward approach for achieving clock phase and
frequency synchronization in HD networks is to generalize the
model of [5] by adding a nested period synchronization loop
for synchronizing {Ti[k]}Ni=1 across the nodes, possibly using
different weights for the period loop than those in the phase
loop. Extending the algorithm (4) to include period updates is
now implemented as follows: At startup, node i initializes its
storage variables for the period, phase, and power, respectively,
∆

(i)
T [j] = ∆

(i)
φ [j] = P (i)[j] = 0, ∀j ∈ IN \ i. At time interval

k, node j = ((k))N +1 transmits and nodes i ∈ IN \j receive.
Then, for any node i ∈ IN \ j for which Pi,j [k] > Pth, the
node first updates N (i) to include j, and then computes and
stores (in the order stated)

∆
(i)
T [j]←

(
∆ti,j [k]−∆

(i)
φ [j]

)
/N

∆
(i)
φ [j]← ∆ti,j [k]

P (i)[j]← Pi,j [k].

Observe that ∆
(i)
T [j] represents the difference between the

clock periods at nodes i and j, and ∆
(i)
φ [j] is the difference

between the clock phases at these nodes. The nested scheme
is described by the following clock update equations:

φi[k + 1] = φi[k] + Tcom + Ti[k] + Ωi[k] (5a)
Ti[k + 1] = Ti[k] + ∆Ti[k], (5b)

where the corrections Ωi[k] and ∆Ti[k] are computed by
weighting the respective differences:

∆Ti[k] =


∆Ti[k − 1], ((k))N 6=N−1
εT
N

∑
j∈N (i)

α
(T )
i,j ·∆

(i)
T [j], ((k))N =N−1 (6a)

Ωi[k] =


0, ((k))N 6=N−1

εφ
∑

j∈N (i)

α
(φ)
i,j ·∆

(i)
φ [j], ((k))N =N−1 (6b)

In (6), (εT , α
(T )
i,j ), (εφ, α

(φ)
i,j ) denote the loop gains and

weighting coefficients for the period correction loop and the
phase correction loop, respectively. Observe that in HD the
correction is applied once in a TDMA frame while in FD the
correction is applied at every time-slot, which is N times faster
than in HD. Note that period correction is applied gradually
over a TDMA frame duration to avoid a large instantaneous
phase jump, which is harder to track.

The Appendix analyzes the frequency synchronization error
after convergence when clock phase and clock period updates
are simultaneously applied, as in (6). The analysis shows
that simultaneous updates result in inherent clock frequency
differences between the nodes after convergence: Even if
all clocks are set to the same frequency, the propagation
delays induce a non-zero correction signal at the period

update loop which shifts the frequencies away from the zero-
error point. Moreover, when the phase updates are applied
simultaneously with the frequency updates then the clock
phase updates may compensate for clock frequency errors.
This can be directly deduced from [5] where clock phase
synchronization is achieved while clock frequency differences
exist (but without propagation delays) while the loop updates
only the clock phases but not the clock frequencies. Thus, a
direct implementation of a nested period correction loop will
result in clock period differences remaining after convergence,
which implies that the clock phase drift problem demonstrated
in Fig. 3 will not be resolved.

B. Decoupling Clock Phase and Clock Period Updates

To avoid the negative effect of coupling between the phase
and the frequency updates, we propose a decoupled nested
synchronization scheme. This scheme, referred to in [24]
as the extended Simeone-Spagnolini-BarNess-Strogatz algo-
rithm (ESSBSA), uses the update rule (5), but decouples the
computation of the phase and period correction signals to
facilitate convergence of both clock periods and clock phases.
To achieve this decoupling, the updates are applied period-
ically in a sequence of 3 alternating actions, and therefore,
a cycle of period and phase updates spans 3N time slots,
equivalent to 3 TDMA frames. We denote the interval for
which ((k))3N ∈ {0, 2N − 1} as a “data collection” interval,
at which the clocks are updated via Eqns. (5) where the
correction terms are set to Ωi[k] = ∆Ti[k] = 0. Hence, the
collection interval consists of two TDMA frames, where at
the each TDMA frame, node i collects features as described
above. At the end of the collection interval each node i ∈ IN
obtains ∆

(i)
T [j], ∆

(i)
φ [j], and P (i)[j] for all j ∈ N (i). Next,

when ((k))3N ∈ {2N − 1, 3N − 2}, a “period update” action
is applied with a period correction signal ∆Ti[k] given by

∆Ti[k]

=


εT
N

∑
m∈N (i)

α
(T )
i,m ·∆

(i)
T [m], ((k))3N = 2N − 1

∆Ti[k − 1], 2N≤((k))3N ≤3N−2

0, otherwise.

(7)

Finally, when ((k))3N = 3N − 1, a “phase update” action is
applied with a correction signal Ωi[k], computed as

Ωi[k] =


0, ((k))3N 6= 3N − 1

εφ
∑

m∈N (i)

α
(φ)
i,m ·∆

(i)
φ [m], ((k))3N = 3N − 1. (8)

In Sec. IV-B we recall different assignments of the αi,j’s
proposed in previous works.

The general synchronization algorithm structure described
above is depicted in Fig. 4. The difference between synchro-
nization algorithms using this structure lies in the weights
used for generating the correction signals, i.e., the “Phase
Correction Signal” block and the “Period Correction Signal”
block, which will be defined for each algorithm. Computation
of the phase and the period correction signals for the ESSBSA,
given in Eqns. (7), (8), are schematically depicted in Fig. 5.

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



14352 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 12, DECEMBER 2025

Fig. 4. Schematic description of the nested synchronization algorithm
structure with decoupled updates.

Fig. 5. Schematic description of the correction signal blocks in Fig. 4 for the
ESSBSA algorithm.

Fig. 6. Schematic diagram of the nested loop operations.

Evidently, different assignments of the weights αi,j’s result in
different algorithms, with different steady-state NPDR. In Sec.
IV we analytically derive the asymptotic NPDR of such algo-
rithms for strongly connected configurations, requiring only
that for χ ∈ {T, φ} and i ∈ IN , it holds that

∑N
m=1 α

(χ)
i,m = 1,

α
(χ)
i,i = 0, and α(χ)

i,m ≥ 0, for all m ∈ IN , m 6= i.

IV. NPDR DERIVATION FOR DECOUPLED UPDATES IN
DISTRIBUTED SYNCHRONIZATION FOR TDMA NETWORKS

In this section we analyze the dynamics of our proposed
nested loop structure. The challenge and novelty in the analysis
follows as the rate of the correction signals is one third

Fig. 7. Downsampling and subsequently zero padding.

of the rate of the TDMA frame, thus a complete clock
update cycle spans 3 TDMA frames. Furthermore, the two
corrections are applied at two different instants within the
clock update cycle. The following analysis shows that these
assumptions result in a linear time-varying system. As far as
we know, such a multi-rate synchronization architecture was
not analyzed before. Referring to the loop depicted in Fig. 6
we note that it assumes all clock phase measurements are
collected at the end of a frame, while the scheme in Sec.
IV-B collects clock phase measurements throughout the frame
(see Fig. 1). This assumption simplifies the analysis while
capturing the key elements of the nested loop architecture
which impact its asymptotic performance. In particular, the
decoupled processing is implemented via downsampling by
a factor of 3 and immediately zero padding by a factor of 3.
The concatenation is marked by the symbol ‘↓ 3 ↑’, see Fig. 7.
Note that as the scheme in Fig. 6 operates at TDMA frame
intervals, then each time interval for the loop represents N time
intervals for the synchronization algorithm. Now, consider the
block ’↓ 3 ↑’ in Fig. 7: Letting X(z) denote the Z-transform
of its input, the Z-transform of the output, Y (z), is given
as Y (z) = 1

3

∑2
m=0X

(
e−j

2π
3 mz

)
. Next, we derive the Z-

transforms marked along the signal paths in Fig. 6 as follows:

Q1i(z) =
1

3

2∑
m=0

Ei

(
e− j2π

m
3 z
)

P1i(z) =
εφ
3

2∑
m=0

Ei

(
e− j2π

m
3 z
)

Q2i(z) =
1

3

2∑
m=0

(
z−1

(
1− z−1

)
Ei(z)

)∣∣∣∣∣
z7→ e

− j2π
m
3 z

=
1

3

2∑
m=0

(
e j2π

m
3 z−1

(
1−e j2π

m
3 z−1

)
Ei

(
e− j2π

m
3 z
))

P2i(z)=
εT
3

2∑
m=0

(
e j2π

m
3 z−1−e j4π

m
3 z−2

)
Ei

(
e− j2π

m
3 z
)

Ti(z) = P2i(z)
z−1

1− z−1

The Z-transform of the clock phase signal is now expressed
as

Φi(z) =
(
Ti(z) + P1i(z)

) z−1

1− z−1

=

(
P2i(z)

z−1

1− z−1
+ P1i(z)

)
z−1

1− z−1
.

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



ZINO et al.: DISTRIBUTED CLOCK PHASE AND FREQUENCY SYNCHRONIZATION IN HD TDMA NETWORKS 14353

Substituting the expressions for P1i(z) and P2i(z) into Φi(z)
we obtain(

1− 2 z−1 + z−2
)

Φi(z)

=
εT
3

2∑
m=0

(
e j2π

m
3 z−3 − e j4π

m
3 z−4

)
Ei
(
e− j2π

m
3 z
)

+
εφ
3

2∑
m=0

(
z−1 − z−2

)
Ei
(
e− j2π

m
3 z
)
.

Applying the inverse Z-transform yields (we use k̃ to
emphasize that the time unit is a TDMA frame and not to a
time-slot)

φi[k̃]− 2φi[k̃ − 1] + φi[k̃ − 2]

=
εT
3

2∑
m=0

ej2π
m
3 (k̃−2)

(
ei[k̃ − 3]− ei[k̃ − 4]

)
+
εφ
3

2∑
m=0

(
ej2π

m
3 (k̃−1)ei[k̃ − 1]−ej2π

m
3 (k̃−2)ei[k̃−2]

)
.

Observing that

2∑
m=0

e j2π
m
3 ` =

{
3, ((`))3 = 0

0, otherwise
, 3δ[((l))3],

we arrive at the following linear, time-varying system:

φi[k̃] = 2φi[k̃ − 1]− φi[k̃ − 2]

+
(
εT
(
ei[k̃ − 3]− ei[k̃ − 4]

)
− εφei[k̃ − 2]

)
δ[((k̃))3 − 2]

+ εφei[k̃ − 1]δ[((k̃))3 − 1]

=


0, ((k̃))3 = 0

εφ ei[k̃ − 1], ((k̃))3 = 1

εT
(
ei[k̃ − 3]− ei[k̃ − 4]

)
−εφ ei[k̃ − 2], ((k̃))3 = 2.

Next, for χ ∈ {T, φ}, i,m ∈ {1, 2, . . .N}, define the
column vectors α

(χ)
i , qi, and φ[k̃] s.t.(

α
(χ)
i

)
m

= α
(χ)
i,m,m 6= i, and

(
α

(χ)
i

)
i

= −1(
qi
)
m

= qi,m,m 6= i, and
(
qi
)
i

= 0(
φ[k̃]

)
i

= φi[k̃].

Recall that
∑N
m=1 α

(χ)
i,m = 1, α(χ)

i,i = 0, hence, defining 1(N)

to be the N×1 vector of ones, it holds that
(
α

(χ)
i

)T
1(N) = 0.

Letting γ(φ)i =
(
α

(φ)
i

)T
qi we write

ei[k̃] =

N∑
m=1

αi,m[k̃](φm[k̃] + qi,m)− φi[k̃]

=
(
αi[k̃]

)T
φ[k̃] +

(
αi[k̃]

)T
qi =

(
αi[k̃]

)T
φ[k̃] + γi[k̃],

thus we obtain

φi[k̃] = 2φi[k̃ − 1]− φi[k̃ − 2]

+
(
εT ·

(
α

(T )
i

)T · (φ[k̃ − 3]− φ[k̃ − 4]
)

− εφ ·
(
α

(φ)
i

)T · φ[k̃ − 2]− εφγ(φ)i

)
δ[((k̃))3 − 2]

+
(
εφ ·

(
α

(φ)
i

)T · φ[k̃ − 1] + εφγ
(φ)
i

)
δ[((k̃))3 − 1].

Finally, letting
A(χ) , [α

(χ)
1 ,α

(χ)
2 , . . .,α

(χ)
N ]T

γ(φ) = [γ
(φ)
1 , γ

(φ)
2 , . . ., γ

(φ)
N ]T ,

we obtain a linear, time-varying difference vector equa-
tion for the clock synchronization scheme in HD TDMA
networks:

φ[k̃]

=
(
2IN + εφA(φ)δ[((k̃))3 − 1]

)
φ[k̃ − 1]

+ εφγ
(φ)δ[((k̃))3 − 1]

−
(
IN + εφA(φ)δ[((k̃))3 − 2]

)
φ[k̃ − 2]

− εφγ(φ)δ[((k̃))3 − 2]

+ εTA(T )(φ[k̃ − 3]− φ[k̃ − 4]
)
δ[((k̃))3 − 2]

=



2φ[k̃ − 1]− φ[k̃ − 2], ((k̃))3 =0(
2IN + εφA(φ))φ[k̃ − 1] + εφγ

(φ)

−φ[k̃ − 2], ((k̃))3 =1

2φ[k̃− 1]−
(
IN+εφA(φ))φ[k̃−2]−εφγ(φ)

+εTA(T )(φ[k̃ − 3]− φ[k̃ − 4]
)
, ((k̃))3 =2.

A. Asymptotic Error Analysis in the HD Regime

Letting Tcom ∈ R++ and T̃com = N · Tcom, we write the
clock phase vector as

φ[k̃] = k̃ · T̃com · 1(N) + τ [k̃], (9)

where τ [k̃] denotes the clock phase error vector. Recall-
ing

(
α

(χ)
i

)T
1(N) = 0 it follows that A(χ) · 1(N) =

0(N), where 0(N) is the N × 1 vector of zeros, and we
obtain

k̃ · T̃com · 1(N) + τ [k̃]

=



k̃ · T̃com · 1(N) + 2τ [k̃ − 1]− τ [k̃ − 2], ((k̃))3 = 0

k̃ · T̃com · 1(N) + 2τ [k̃ − 1]− τ [k̃ − 2]

+εφA(φ)τ [k̃ − 1] + εφγ
(φ), ((k̃))3 = 1,

k̃ · T̃com · 1(N) + 2τ [k̃ − 1]− τ [k̃ − 2]

−εφγ(φ) − εφA(φ)τ [k̃ − 2]

+εTA(T )(τ [k̃ − 3]− τ [k̃ − 4]
)
, ((k̃))3 = 2.

Simplifying this expression we finally arrive at

τ [k̃]=



2τ [k̃ − 1]− τ [k̃ − 2], ((k̃))3 = 0

2τ [k̃ − 1]− τ [k̃ − 2]

+εφA(φ)τ [k̃ − 1] + εφγ
(φ), ((k̃))3 = 1,

2τ [k̃ − 1]− τ [k̃ − 2]

−εφγ(φ) − εφA(φ)τ [k̃ − 2]

+εTA(T )(τ [k̃ − 3]− τ [k̃ − 4]
)
, ((k̃))3 = 2.

(10)

Observe that T̃com does not affect convergence. The result-
ing system (10) is a vector linear, periodically time-varying
system, whose dimension is N × 1 and its period is 3. This
system can be equivalently represented as a 3N × 1 linear,
time-invariant system as follows:

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



14354 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 12, DECEMBER 2025

 IN −2IN IN
0N IN −2IN
0N 0N IN


 τ [

˜̃
k]

τ [
˜̃
k − 1]

τ [
˜̃
k − 2]



=

 0N 0N 0N
−IN−εφA(φ) εTA(T ) −εTA(T )

2IN + εφA(φ) −IN 0N


τ [

˜̃
k−3]

τ [
˜̃
k−4]

τ [
˜̃
k−5]

+

 0N
−εφγ(φ)

εφγ
(φ)


(11)

⇔ B · y[m̃] = C · y[m̃− 1] + u

⇔ y[m̃] = B−1 · C · y[m̃− 1] + B−1 · u (12)

where ˜̃
k = 3 · m̃ · k̃ for m̃ ∈ Z++, and B, C, y[m̃], and u in

Eqn. (12) are defined as the respective quantities in Eqn. (11).
Using elementary matrix operations we can explicitly com-

pute

B−1C =

 4IN + εφA(φ) 2εTA(T ) − 3IN −2εTA(T )

3IN + εφA(φ) εTA(T ) − 2IN −εTA(T )

2IN + εφA(φ) −IN 0

 .
Clearly, when the network is strongly connected then the
system matrix is irreducible, which is a necessary condition for
facilitating network clock synchronization [12, Thm. 1]. We
also observe that A(φ) · 1N = A(T ) · 1N = 0N , which is also
a necessary condition for the existence of a steady state. Note
that the case of a second order loop is considered difficult to
solve analytically [12]; hence we evaluated the eigenvalues of
B−1C for 800 realizations in the numerical evaluation in Sec.
VI. It was observed that in all deployments no eigenvalues
were outside the unit circle. Applying the vector Z-transform
to Eqn. (12) we obtain

B ·Y(z) = C ·Y(z) · z−1 + u
(
1− z−1

)−1
⇒ (B− Cz−1) ·Y(z) = u ·

(
1− z−1

)−1
Y(z) =

(
B− Cz−1

)−1
u ·
(
1− z−1

)−1
.

Lastly, we apply the final value theorem to obtain the asymp-
totic value of y[m̃]:

y∞ ≡ lim
m̃→∞

y[m̃] = lim
z→1

(z− 1)Y(z)

= lim
z→1

(z− 1)
(

B− Cz−1
)−1

u
z

z− 1

=
(
B− C

)−1
u (13)

Note that we are interested in the asymptotic NPDR which
is expressed as

NPDR[k̃] −→
k̃→∞

max{y∞} −min{y∞}
Tcom

(14)

where Tcom is the common clock period in (9).

B. Performance Evaluation of Distributed Synchronization
With Previously Proposed Weights

1) Nested Loops With Weights Computed According to
Relative Power: In [5] and [12], the weights were computed

Fig. 8. Performance of the EWA and the RPA with εT = εφ = 0.3 for the
representative scenario. (a) Normalized clock periods Tcom + Ti[k] vs. k for
the EWA; (b) Normalized clock periods Tcom + Ti[k] vs. k for the RPA. In
(a) and (b) each line represents the trajectory of the clock period at a different
node. (c) The NPDR vs. k for both the EWA and the RPA.

according to the relative power. Explicitly, for χ ∈ {φ, T}, the
weights α(χ)

i,j are set to [5, Eqn. (8)]

α
(χ)
i,j = αi,j =

P (i)[j]∑
m∈N (i)

P (i)[m]
, (15)

It is verified that
∑
j∈N (i) αi,j = 1, hence, setting αi,i = 0

we can also write
N∑
j=1

αi,j = 1, i = 1, 2, . . . , N. (16)

We refer to the nested phase and frequency synchronization
algorithm (NPFSA) with the weights of (15) as the relative
power algorithm (RPA).

2) Nested Loops With Equal Weights: A simple alternative
to the RPA is weighing all period and phase errors equally
across the received nodes, i.e.,

α
(φ)
i,j = α

(T )
i,j = αi,j = 1/|N (i)| (17)

Again, setting αi,i = 0, (16) is satisfied with the assignment
(17). We refer to the NPFSA with weights (17) as the equal-
weights algorithm (EWA). Such an approach was analyzed in
[27], where the optimal bandwidth was derived, it was also
shown that local computation at the nodes is globally optimal
(subject to using equal weights).

The performance of the EWA and RPA for the representa-
tive scenario of Fig. 2 is depicted in Fig. 8 for εT = εφ = 0.3.
Figs. 8a and 8b depict the evolution of the clock periods. It
can be observed that the RPA requires a very long time to
accurately synchronize the periods, while the EWA quickly
achieved high accuracy. This can be attributed to the fact that
for the RPA, the system matrix B−1C has more eigenvalues
close to the unit circle than for the EWA. Fig. 8c depicts the
NPDR for both algorithms. It is evident from the figure that the

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



ZINO et al.: DISTRIBUTED CLOCK PHASE AND FREQUENCY SYNCHRONIZATION IN HD TDMA NETWORKS 14355

TABLE I
MEAN AND STD OF THE ASYMPTOTIC NPDR FOR THE EWA AND RPA

RPA is not able to achieve accurate clock synchronization, and
in fact, as time increases the clocks’ phases drift farther apart,
eventually converging at a very high NPDR. It is also evident
that the EWA achieves superior convergence performance
compared to the RPA. Finally, note that the EWA’s weighting
scheme does not require measurement of the received signal
power. This suggests the suboptimality of the intuitive weights
of (15).

We next compare the asymptotic NPDR according to the
analytical expression with the measured results, for both
the EWA and the RPA, both for the representative network
depicted in Fig. 2 and a statistical comparison with 100
network realizations. The results are summarized in Table I.
Observe that there is a very good match between the measured
results and the analytic results. The difference for the RPA
is attributed to the extremely slow convergence due to poles
closer to the unit circle. Note that for the representative sce-
nario a single realization is tested thus the standard deviation
(STD) is irrelevant and the mean is equal to the final NPDR
value.

C. Discussion

From the above analysis we draw several important insights:
• First, we note that the novelty and rationale of the pro-

posed decoupled structure are validated by the analysis
reported above: Without decoupling the phase and period
updates, it is analytically shown in the Appendix that the
frequencies of the clocks do not reach perfect alignment,
namely, there remain clock period differences after con-
vergence. In our analysis of the decoupled scheme we
show that as no eigenvalues of the system matrix B−1C
are outside the unit circle, then the phase differences
between the nodes reach constant values which imply that
the periods reach the same value. Thus, the decoupled
nested loop structure is able to synchronize the period and
phase also when operating in the HD regime, implying
that decoupling results in a fundamental improvement
in system performance compared to the non-decoupled
structure. As far as we can tell, this is the first analysis
for a HD synchronization loop, and the first one to derive
performance for decoupled updates. The derivation shows
that the decoupled algorithm is represented by a linear,
periodically time-varying system.

• We observe, that if the propagation delays are neglected,
the nested loop is able to synchronize both phase and
frequency with (nearly) zero error, even if the initial
clocks’ periods are different. This is in contrast to the
situation with only a phase loop, where it was shown
that different clock frequencies induce asymptotic phase

mismatch [5]. It follows that the inherent factor which
limits synchronization accuracy is the propagation delays,
whereas different clock frequencies can be algorithmi-
cally addressed.

• The analysis shows that the weights (i.e., the matrices
A(φ), A(T )) not only affect the rate of convergence but
also affect the asymptotic NPDR.

• If the propagation delays are known (e.g., fixed locations)
then (14) can be used to determine the optimal weights,
in the sense of minimal NPDR.

• As Tcom does not affect convergence, it can be selected
arbitrarily. One possible option is to set a reference node
that will not adjust its clock period. The analysis above
implies that all nodes will perfectly synchronize their
periods with the reference node.

The facts that the optimal weights depend on parameters
which are inherently a-priori unknown and that intuitive
assignments do not work well, strongly motivate optimizing
the weights after deployment, which is the focus of the next
section.

V. DNN-BASED COEFFICIENTS OPTIMIZATION WITH
UNSUPERVISED DISTRIBUTED ONLINE LEARNING

In our preliminary work [24] we proposed DNN-based
weights that led to superior performance compared to the RPA.
Inspired by the good accuracy attained by the EWA, in the
current work we significantly improve upon the scheme of
[24]: We modify the DNN used in [24] by adding a layer
that facilitates initializing some of the DNN parameters s.t.
the correction signal generated prior to training approximates
the EWA signal. Thus, after training, the DNN-aided algorithm
will generally improve upon the EWA and upon [24]. We note
that identifying the initial parameters’ values that will result
in desired DNN output values has largely not been considered
previously for this type of DNN applications, and represents
another novel aspect of our current work.

A. Overview of the Proposed DNN-Aided Algorithm

Our proposed DNN-aided NPFSA, referred to as the DNN-
aided algorithm (DAA), employs learning only for the phase
and period correction signals, keeping the other elements of the
loop structure of Fig. 4 and the periodic, staggered temporal
regime schematically described in Fig. 5, while replacing only
the weights α(φ)

i,j , α(T )
i,j in Eqns. (7), (8), with the outputs of

two DNNs. To that aim, let ψ(θT,i)
T,i (·) and ψ

(θφ,i)
φ,i (·) denote

the DNNs used for computing the weights for the period and
for the phase corrections at node i ∈ IN , respectively, where
θT,i and θφ,i denote their respective DNN parameters.

During the “period update” action, which takes place at
((k))3N ∈ {2N − 1, 3N − 2}, see Eqn. (7), node i uses
weights γ(T )

i,j , generated by the DNN ψ
(θT,i)
T,i (·), for computing

its period correction signal, while Ωi[k] = 0. The weights γ(T )
i,j

are computed at node i at time interval k s.t. ((k))3N = 2N−1,
via

γ
(T )
i,j =

[
ψ
(θT,i)
T,i

({(
∆

(i)
T [j′],P (i)[j′]

)}N
j′=1,
j′ 6=i

)]
j
, γ

(T )
i,i = 0.

(18)

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



14356 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 12, DECEMBER 2025

The period correction signal at node i is given by

∆Ti[k]=


εT
N

N∑
j=1

γ
(T )
i,j ·∆

(i)
T [j] , ((k))3N = 2N−1

∆Ti[k − 1], 2N≤ ((k))3N ≤3N−2

0, otherwise.
(19)

Subsequently, during the “phase update” action, when k is s.t.
((k))3N = 3N − 1, an update is applied by weighting the
received clock phase differences with weights γ(φ)i,j generated
by the DNN ψ

(θφ,i)
φ,i (·), while ∆Ti[k] = 0. The weights γ(φ)i,j

are then computed at node i via

γ
(φ)
i,j =

[
ψ
(θφ,i)
φ,i

({(
∆

(i)
φ [j′],P (i)[j′]

)}N
j′=1,
j′ 6=i

)]
j
, γ

(φ)
i,i = 0, (20)

and the phase correction signal at node i is given by

Ωi[k] =


εφ

N∑
j=1

γ
(φ)
i,j ·∆

(i)
φ [j] , ((k))3N = 3N − 1

0, otherwise.

(21)

The overall algorithm operates as in Fig. 4, with the α(T )
i,j ’s

in (7) replaced with γ
(T )
i,j given in (18), and α

(φ)
i,j ’s in (8)

replaced with γ(φ)i,j given in (20).

B. Operation of the Proposed DAA (at Node i)

In [24], the DNNs were trained right after startup with
random initial parameters θT,i and θφ,i. It is reasonable to
assume that further improvement in performance could be
achieved if training would start when the clocks have already
achieved a certain degree of synchronization prior to training
data acquisition. The difficulty here lies as it is generally
unknown how to set the initial values of θT,i and θφ,i to
obtain desired weights for initial convergence. In this work
we propose a DNN structure with an initialization which
facilitates an approximate EWA prior to training. To that aim
we add a layer before the last layer in the DNN of [24],
designated as a “bias layer”, which adds a predetermined bias
value to each input. Note that during training these biases are
optimized as well. The outputs of the “bias layer” are then
scaled by the last layer s.t. they add up to 1. Let xl ∈ [0, 1]
denote the l-th input to the “bias layer”, where the xl’s are
scaled s.t.

∑
l∈N (i) xl = 1. Letting bl denote the bias applied

to the l-th input, the l-th output of the bias layer is expressed
as xl + bl. After scaling such that the sum of the outputs will
be 1, we obtain the l-th weight as

wl =
xl + bl∑

l′∈N (i)(xl′ + bl′)

=
xl + bl∑

l′∈N (i) bl′ + 1
∈

[
bl

1+
∑
l′∈N (i) bl′

,
bl + 1

1+
∑
l′∈N (i) bl′

]
.

It thus follows that the initial value of bl can be selected such
that the weights wl are approximately equal.

The proposed DAA operates as follows: At startup, the DNN
parameters θT,i and θφ,i are randomly selected, except for the

Fig. 9. Schematic description of the DNN. X(i) ≡
{

∆
(i)
φ [j]

}
j∈N (i)

for

phase correction, and X(i) ≡
{

∆
(i)
T [j]

}
j∈N (i)

for period correction.

TABLE II
SUMMARY OF THE LAYERS IN THE DNN IMPLEMENTATION

parameters of the “bias layer” bl, l ∈ N (i) which are set to
a constant bl = B, and bl, l /∈ N (i) which are set to zero.
The network then begins operating for an initial interval of
Ninit time-slot intervals, while the parameters θT,i and θφ,i
are kept fixed. This operation approximates the EWA, hence
given sufficient time it would typically achieve a relatively
accurate synchronization. After Ninit samples, the DAA begins
data acquisition over NT TDMA frames, or, equivalently over
N · NT time-slot intervals. Subsequently, the DAA applies
local training to the parameter vectors θT,i and θφ,i at each
node for a total of 2 ·Eloop ·Es epochs, after which the DAA
continues to operate with the trained DNNs. In Sec. V-D we
elaborate on the acquisition and training steps.

C. DNN Structure and Complexity Analysis

The frequency synchronization loop and the phase synchro-
nization loop use the same DNN structure, depicted in Fig. 9.
Each DNN consists of a total of ten layers, including two
affine layers, each followed by a sigmoid layer, a third linear
layer followed by a softmax layer, whose outputs are input to
an affine layer referred to as the bias layer which introduces
a bias as detailed in Sec. V-B. A mask is then applied to the
output of the bias layer, setting all outputs that correspond to
network nodes not received at the current node to zero. After

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



ZINO et al.: DISTRIBUTED CLOCK PHASE AND FREQUENCY SYNCHRONIZATION IN HD TDMA NETWORKS 14357

masking, all negative outputs are set to zero and the remaining
outputs are scaled such that they add up to one. These outputs
are the weights applied in the loop. The number of inputs and
outputs of each layer are summarized in Table II.

For a network with N nodes, each DNN consists of (3(N−
1) + 30) · 30 weights and 2 · 30 + (N − 1) biases. For a
network with N = 16 nodes, we obtain 2250 weights and 75
biases per DNN. We note that, since each DNN is used for
inference only once per 3 · N time slots, and there are two
DNNs at each node, the rate of computation at a node is 1500
products for inference per TDMA frame, which is a feasible
computational load for real-time modern microcontrollers, see
[11] and [28]. We note that apart from the computation of
the weights, the three synchronization algorithms discussed
in Section IV-B and in this section, namely, the EWA, RPA,
and DAA have the same complexity. Hence, the complexity
obtained here represents the excess computational burden of
the DAA relative to the RPA and the EWA. Note that this
complexity, scales linearly with the number of nodes N, for
N ≤ 16.

D. Unsupervised Distributed Online Training

Typically, DNNs are trained offline with data collected a-
priori. However, as follows from the analysis in Sec. IV and
was also empirically observed in [11], the accuracy of DNN-
aided clock synchronization can be improved by using training
data that corresponds to the actual parameters of the network
deployment, i.e., the actual clock frequency differences, clock
phases, and, most critically, propagation delays and neigh-
borhood sets. This requires collecting the training data after
deployment. Accordingly, the training process consists of three
steps:

Step 1: A free running step where each node applies its
clock update algorithm with fixed DNN parameters, judi-
ciously selected to approximate the EWA. We note that by
the analysis in [12], it follows that the EWA is convergent for
a first order phase loop. From the extensive simulation tests
reported in Sec. VI it follows that the EWA is expected to
converge for the current setup, as discussed in Secs. IV-A and
IV-C.

Step 2: A data acquisition step is applied following the free
running step. In this step, each node stores the time stamps
for the clock signatures received from its neighboring nodes
along with power measurements of the signature signals.

Step 3: Finally, in the third step, training is applied, min-
imizing the loss functions. As explained in Sec. V-D.3, the
structure of the proposed loss functions facilitates using back-
propagation to compute the gradients.

We note that throughout this process, the clock synchro-
nization algorithm at each node continues its clock update
operation with its initial DNN parameters. The timeline of the
different steps of the algorithm is depicted in Fig. 10. In the
following subsections we elaborate on the steps of the training
algorithm.

1) Initialization of DNNs’ Parameters θT,i and θφ,i: As
detailed in Sec. V-B we initialize the “bias layer” parameters
represented by the vector b4 in “Affine Layer 4” in Fig. 9, to

Fig. 10. Timeline for the three steps of the DAA training process.

values B while the remaining DNN parameters in θT,i and in
θφ,i are generated randomly. The synchronization scheme then
operates with fixed parameters for Ninit time-slot intervals,
after which the data acquisition and training step is applied,
as described next.

2) Data Acquisition and Training Set Generation: The data
acquisition step begins at k = Ninit+1, and spans NT TDMA
frames, each consists of N transmissions, one from each node.
During data acquisition, each node i continues updating its
clock times via the DAA with its fixed initial parameters, θφ,i
and θT,i, determined as detailed in Sec. V-D.1. At time-slot
interval k, node j=((k))N +1 transmits, and each node i ∈
IN \ j receives. Thus, at every time k, Ninit + 1 ≤ k ≤
Ninit+N ·NT , node i stores the pair

{
∆ti,j [k]+φi[k], Pi,j [k]

}
,

where j = ((k))N + 1, j 6= i. After receiving NT TDMA
frames, each node i generates a training set containing NT
samples, where each sample consists of N − 1 pairs. Setting
ti,((k))N+1[k] , ∆ti,((k))N+1[k] + φi[k], the overall training
set at node i is given as

Di =
{
ti,((k))N+1[k], Pi,((k))N+1[k]

}Ninit+N ·NT

k=Ninit+1,((k))N 6=i−1

3) Training Procedure: Once the acquisition step is com-
pleted, node i processes the stored training data at sample
k′, Ninit + 1 ≤ k′ ≤ Ninit + N · NT as follows: Let
j′ = ((k′))N +1. Then, if Pi,j′ [k′] > Pth, the features used for
computing the outputs of the DNNs ψ(θT,i)

T,i (·) and ψ(θφ,i)
φ,i (·)

are obtained in the following order

∆
(i)
T [j′]←

(
ti,j′ [k

′]− φi[k′]−∆
(i)
φ [j′]

)
/N

∆
(i)
φ [j′]← ti,j′ [k

′]− φi[k′]
P (i)[j′]← Pi,j′ [k

′].

If Pi,j′ [k′] ≤ Pth, node i sets ∆
(i)
T [j′]=∆

(i)
φ [j′]=P (i)[j′] =

0. Subsequently, the DNNs compute the weights for the phase
and for the period loops at node i, using the respective 2(N−1)
features at each DNN according to the time regime via Eqns.
(5), (18), (19), (20), and (21). Let

∆Ti,j′ [k
′]=

1

N
(ti,j′ [k

′]− φi[k′]− ti,j′ [k′−N ] + φi[k
′−N ]).

(22)
Note that ∆Ti,j′ [k

′] represents the estimate of the difference
between the clock periods at nodes i and j′ as measured at
node i at time index k′. Next, let 1(i,j′)(k

′) denote the indi-
cator function for the event

{{
Pi,j′ [k

′] > Pth
}
∩
{
i 6= j′

}}
.

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



14358 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 12, DECEMBER 2025

The loss functions are computed as follows:

L(φ)
i (θi,φ) =

Ninit+NT ·N∑
k′=Ninit+N+1
j′=((k′))N+1

1(i,j′)(k
′) log(k′′(k′))

· (ti,j′ [k′]− φi[k′])2 (23)

L(T )
i (θi,T ) =

Ninit+NT ·N∑
k′=Ninit+N+1
j′=((k′))N+1

1(i,j′)(k
′) log(k′′(k′))

·
(

∆Ti,j′ [k
′]
)2
, (24)

where k′′(k′) = k′ −Ninit −N .
The structure of the loss functions in Eqns. (23), (24),

implies that their gradients w.r.t. the weights can be computed
via back-propagation in time. Furthermore, these loss func-
tions can be computed at each node locally in an unsupervised
manner. This training process is summarized in Alg. 1, which
expands upon [24, Alg. 1] to handle the new initialization.
Observe that at each training batch, first, only the period loop
is trained, and then only the phase loop is trained. This is
done to avoid the phase loop compensating for period errors,
which would decrease the accuracy of period synchronization
across the nodes. Finally, note that as training is local at each
node and uses only its received inputs obtained during the data
acquisition step, the proposed approach is flexible and would
generally scale with the size of the network (as long as the
number of inputs at the first layer is larger than 2(N − 1) and
the number of outputs at the third layer and at the subsequent
layers is larger than N−1). The overall operation of the DAA
is summarized in Alg. 2.

Comment 1 (Regarding Convergence of the DAA): There
are quite a few works on the convergence of distributed
learning using stochastic gradient descent, assuming the loss
is strongly convex w.r.t. the weights, e.g., [29], [30]. Note
that the sigmoid function used in the DNN structure depicted
in Fig. 9 is not convex, which makes showing convergence
analytically a very challenging task. This issue is not special
to our study, and is a universal issue with the application of
machine learning in distributed settings. That said, we note
that the weights obtained from the trained DNNs satisfy the
two fundamental properties of the analytical weights: They
are positive and add to 1. Thus, based on the analysis for the
RPA and the EWA reported in Sec. IV, the proposed DAA
satisfies necessary conditions for convergence. Furthermore,
as optimization begins with weights that approximate the
EWA, it would generally result in performance improvement
over the EWA. In Sec. VI we empirically tested 800 random
realizations of strongly connected networks, and observed that
convergence was achieved for all tested network realizations.
All these observations indicate that the proposed DAA is very
likely to converge.

VI. PERFORMANCE EVALUATION

A. Baseline Scenario and Reference Schemes

In the simulations we use the network and clock models
described in Sec. II. For determining the state-of-the-art,

Algorithm 1 Unsupervised Online Local Training at Node i

consider first the previously proposed EWA and RPA, reviewed
in Sec. IV-B, and note that both the EWA and the RPA have the
same nested loop architecture depicted in Fig. 4. An alternative
approach to the loop-based architecture is the skew and offset

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



ZINO et al.: DISTRIBUTED CLOCK PHASE AND FREQUENCY SYNCHRONIZATION IN HD TDMA NETWORKS 14359

Algorithm 2 Operation of the DAA at Node i

estimation (SOE) method, which was studied in [19] and
[31]. Consider the operation of the SOE scheme [19] (after
adaptation to the HD regime): Let T prd

i [0] and φi[0] denote the
initial period and initial clock phase. Let T̂ prd

i [0; k] denote the
estimate of T prd

i [0] at time k and φ̂i[0; k] denote the estimate
of φi[0] at time k. Then, the compensated clock at node i is
given by (see [19, Eqn. (3)])

φi[k] =
T prd
i [0]

T̂ prd
i [0; k]

· k + φi[0]− φ̂i[0; k],

which ideally should approach some common clock, i.e.,
φi[k]−→k. The details of the computation of T̂ prd

i [0; k] and
φ̂i[0; k] are elaborated in [19].

Our simulation tests in Sec. VI-B show that out of the three
considered reference schemes, the SOE, RPA, and EWA, the
latter is consistently superior to the former two (in fact, the
SOE was not able to converge at all in our simulations). Hence,
as follows from Sec. IV-B, we use the EWA as a reference

Fig. 11. Histogram of the ratio NPDRRPA[k]/NPDREWA[k] at k = 12000;
εT = εφ = 0.3. Ratios greater than 1 are marked in blue and ratios smaller
than 1 are marked in red.

scheme for comparison with the DAA.3 The training data for
the DAA was acquired over NT = 126 TDMA frames, which,
for N = 16 nodes correspond to 2016 samples, and training
was carried out using Es = 6 cycles with Eloop = 5. Thus,
overall, each DNN was trained over 30 epochs with a learning
rate of µ = 0.1. In the testing phase, NT = 751 TDMA
frames were used. The bias value for “Affine Layer 4” was
set to B = 3, and we used Ninit = 3000 time-slot intervals
for initial convergence prior to training data acquisition.

B. Statistical Comparison for Static Deployments

In order to draw meaningful conclusions, we considered
multiple random deployments: Statistical performance was
obtained by randomly generating 800 network scenarios in
which the nodes were randomly and uniformly deployed
within the network area, and the initial phases and peri-
ods were selected according to the statistics detailed in
Sec. II-B. To maintain fairness of comparison, only 800
strongly connected networks scenarios in which about 30%
of the links are received above the detection threshold (i.e.
active links) were considered. We emphasize that in order to
characterize performance, the simulation tests must simultane-
ously account for all the nodes in the network. This follows
as the propagation delays are non-negligible and unknown.
Then, for the same transmitter’s signal, different receivers
record different time stamps due to propagation delays, hence,
considering only a pair of nodes would not represent the actual
performance.

Fig. 11 depicts the histogram of the NPDR ratio
NPDRRPA[k]/NPDREWA[k]. It is observed that in all the
deployments, the EWA achieved smaller NPDR than the RPA,
which implies that the EWA should serve as a baseline for
evaluating the DAA. Next, Fig. 12 depicts the histogram of
the NPDR ratio NPDREWA[k]/NPDRDAA[k]. It is observed
that in 89% of the deployments, the DAA achieved smaller
NPDR than the EWA. Note that this is a clear benefit of our
initialization approach. It follows that the DAA offers much
better performance than the EWA (and hence also better than
the ESSBSA).

3The complete source code is available at https://github.com/itayzin/
Accurate Clock Synchronization HD TDMA

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



14360 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 12, DECEMBER 2025

Fig. 12. Histogram of the ratio NPDREWA[k]/NPDRDAA[k] at k = 12000;
εT = εφ = 0.3. Ratios greater than 1 are marked in blue and ratios smaller
than 1 are marked in red. TABLE III
MEAN AND STD OF THE NPDR AND THE PERIOD AT k = 12000, FOR 800

EXPERIMENTS.

Table III summarizes the values of the mean and the STD
of the NPDR at k = 12000 for all schemes, together with
the mean and STD for the periods. For comparison, we also
include the performance of a DAA scheme with all DNN
parameters selected randomly (without learning), abbreviated
as DAARND. Observe from the table that the mean NPDR
of the DAA is significantly smaller than that of the EWA (by
a factor of 2.5) and that the STD of the NPDR of the DAA
is smaller than that of the EWA by a factor of 3.86. This
shows that the DAA achieves a significant improvement in
accuracy w.r.t to the reference scheme. It should be noted that
the performance of the DAA can be improved by decreasing
the step size, but this will also increase the training time.
Comparing the DAA with DAARND we observe substantial
improvement offered by the proposed parameter initialization:
The mean NPDR is reduced by a factor of 1.65 and its STD
is reduced by a factor of 2.81.

C. The Impact of Clock Phase Drift on Synchronization

Typically, works that have considered clock synchronization
for ad-hoc wireless networks have ignored the impact of
clock drift [5], [19], as the clock update rate is typically
faster than the dynamics of the drift process. In the following
test we verify the validity of this assumption by testing the
performance of both the DAA and the EWA in the presence
of random clock drift. To this aim we extend the clock model
in (1) to include a random drift process, ξi[k], i ∈ IN , k ∈ Z+.
Following [32], [33], and [34], we model ξi[k] as a first-order
autoregressive process (AR (1)), whose steady-state root mean-
square (RMS) value corresponds to 1% of the nominal data
clock period, denoted Tdata:

ξi[k] = ρ · ξi[k − 1] + ηi[k]

where ηi[k] ∼ N(0, σ2
ηi) is independent across k and is inde-

pendent of ξi[k− 1], and the values of σ2
ηi and ρ are selected

Fig. 13. Sample path for NPDREWA[k] (brown) and NPDRDAA[k] (blue)
vs. slot index k, before and after training in the presence of random clock
drift; εT = εφ = 0.3.

Fig. 14. Histogram of the ratio NPDREWA[k]/NPDRDAA[k] in the presence
of random clock drift; εT = εφ = 0.3. Ratios greater than 1 are colored blue
and ratios smaller than 1 are colored red.

s.t. σηi/
√

1− ρ2 = 0.01 · Tdata. We set ρ = 0.999 as in [35].

The initial noise sample is taken from ηi[0] ∼ N
(

0,
σ2
ηi

1−ρ2

)
.

The overall clock model used in this test is thus

φi[k + 1] = φi[k] + Tcom + Ti[k] + ξi[k], k ∈ Z+.

To determine Tdata we consider a bit rate of 800 [Kbps] with
4 bits per symbol, hence Tdata = 4/8 · 10−5 = 5 [µsec]. The
steady state RMS drift value is then 0.5 · 10−7 [sec].

To accommodate the correlation of the drift process in the
DAA training, we increase the number of training data to 1250
TDMA frames. Fig. 13 depicts a sample path of the NPDR
values for the representative deployment of Fig. 2. The random
variations of the NPDR due to the random drift are evident.
Also, observe the visible improvement in the NPDR due to
training which concludes at k = 24000. Next, Fig. 14 presents
the histogram of the NPDR ratio NPDREWA[k]/NPDRDAA[k]
in the presence of random clock drift, taken with 800 random
realizations. Noting that the NPDR is a random process, we
use the average of the NPDRs over the last 150 TDMA
frames, ending at time-slot k = 100000, as the NPDR
values for the comparative histogram. From the histogram we
obtain that the mean value and the STD of the NPDR ratio,
NPDREWA[k]/NPDRDAA[k], are 1.55 and 0.59 respectively.
We also evaluated the normalized STD for period estimation
STD(T̄ [k])/E{T̄ [k]}, obtaining 0.83 · 10−3 for the EWA and
0.89 · 10−3 for the DAA. With DAA being superior at over
80% of the realizations, it follows that the clear advantage of
the DAA over the EWA is maintained also under random drift,
as expected.

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



ZINO et al.: DISTRIBUTED CLOCK PHASE AND FREQUENCY SYNCHRONIZATION IN HD TDMA NETWORKS 14361

Fig. 15. NPDRDAA[k] and NPDREWA[k] when clock phase and frequency
resets are applied to 25% of the nodes in the network; εT = εφ = 0.3.

D. Recovery From Random Phase and Frequency Resets

In typical operation of physical nodes, clocks’ frequencies
and phases may vary abruptly with temperature (especially
in digitally compensated oscillators), [36], [37]. In this test
we verify that synchronization can be quickly restored also
when such frequency and phase jumps occur. To that aim we
tested the DAA and the EWA for the network deployment in
Fig. 2 in a scenario in which after convergence, a randomly
selected set of 25% of the nodes experience random phase
and frequency jumps. These jumps were implemented by
generating the phases and frequencies of the selected nodes’
oscillators via the statistics detailed in Sec. II, every 270
TDMA frames. Fig. 15 depicts the NPDRs for the DAA
and the EWA. Observe that both schemes successfully re-
acquire synchronization, whereas DAA is slightly superior to
the EWA, as it achieves equal or smaller NPDR right before
the reset is applied. In particular, this experiment demonstrates
the robustness of the DAA to such resets. This robustness,
in turn, implies that the learned weights are less affected by
the initial phase and frequency differences between the nodes,
implying that the propagation delays are the major factors
affecting synchronization performance.

E. Robustness to Node Mobility

In the last test we examined how variations in the locations
of the nodes affect synchronization accuracy. To that aim, we
tested 10 randomly selected network deployments of strongly
connected networks, enumerated as NM1−NM10. For each
network, after convergence, a group of 25% of the nodes was
randomly selected, where each selected node was assigned a
randomly selected direction. Then, each selected node started
moving in its assigned direction at a speed of 150 [Km/h],
traversing an overall distance of 1 [Km] during the simulation.
Fig. 16 depicts the NPDRs for the DAA and the EWA in
this experiment. It is clearly observed from the figure that
changes in nodes’ positions impact the NPDR for both the
EWA and the DAA, which follows as both propagation delays
and neighborhood sets vary due to node movement. Yet, both
schemes exhibit gradual variation of NPDR values during the
change in deployment. By computing the ratio of the NPDRs
we observe that, without retraining, the DAA maintained

Fig. 16. NPDRDAA[k] (top, solid) and NPDREWA[k] (bottom, dashed) when
25% of the nodes in the network begin moving at a speed of 150 [Km/h] in
randomly selected directions, starting at k = 44000 and stopping at k =
48000; εT = εφ = 0.3.

Fig. 17. Average of all loss functions for initial convergence (top, solid, blue)
and for retraining after node movement (bottom, dashed, red) for scenario
NM1. The markers show the point at which the loss completes 90% of its
overall decrease; εT = εφ = 0.3.

superiority over the EWA for displacements less than 800
[m], and for the overall displacement of 1 [Km] the DAA
maintained its superiority in 70% of the tested scenarios.
Evidently, Fig. 16 shows that the DAA exhibits significant
robustness to node mobility.

One approach for mitigating the impact of large displace-
ments on the DAA’s performance is by retraining the network
online. Fig. 17 presents the evolution of the average of the
loss functions for all N = 16 node vs. the training epoch, for
initial convergence (i.e., training before movement) and for the
retraining after nodes have stopped, for scenario NM1. By
comparing the time it takes for the loss function to achieve
90% of its convergent value (marked by the circle at the top
plot and the ‘X’ at the bottom plot), we observe that the
retraining is 30% faster than the initial convergence, which
follows as only a partial update is required.

VII. CONCLUSION

In this work we have addressed distributed clock syn-
chronization of both clock phases and periods in TDMA
networks with HD transmissions. We proposed a synchro-
nization scheme based on nested feedback loops that update
the clock’s phase and period using a weighted error. We
analytically showed that the accuracy of this scheme depends

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



14362 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 12, DECEMBER 2025

on the unknown propagation delays, which motivated online
learning for optimizing the weights according to the actual
deployment. We then proposed a new algorithm which imple-
ments online learning via a DNN-based rule that weights the
inputs with learned weights, determined by the measured time
offsets and receive powers. The proposed training algorithm
uses a novel initialization of the DNN parameters which
facilitates initial convergence with DNN-based weights that
approximate the EWA. Then, after a certain convergence time,
each node acquires training data and subsequently applies
training locally. We have shown that our new algorithm is
superior to previously proposed schemes, including our pre-
viously proposed ESSBSA clock synchronization algorithm,
and exhibits robustness to clock phase and frequency resets as
well as to node mobility.

APPENDIX
DRIFT DUE TO COUPLING WHEN PHASE AND FREQUENCY

ARE SIMULTANEOUSLY UPDATED

Let k′N = bk/Nc ·N denote the most recent time index at
which the correction signals ∆Ti[k] and Ωi[k] in Eqns. (6) are
updated w.r.t to time index k and let km denote the most recent
time index at which node m transmitted at the previous cycle
(i.e., the cycle whose last time instant was k′N ). Setting the
weights α(φ)

i,m = α
(T )
i,m = αi,m, we recall that

∑
m∈N (i) αi,m =

1. Then, using the definition of ti,j [k] and the update rules (5)
and (6) we can express

Ti[k+1]

= Ti[k] +
εT
N

∑
m∈N (i)

αi,m∆
(i)
T [m]

(a)
= Ti[k] + εT

∑
m∈N (i)

αi,m
(
(φm[km]− φm[km −N ])

− (φi[km]− φi[km −N ])
)
/N2

= Ti[k]+
εT
N2

∑
m∈N (i)

αi,m

((
km−1∑
l=km−N

Tm[l] + Ωm [k′N − 1]

)

−

(
km−1∑

l=km−N

Ti[l] + Ωi [k′N − 1]

))
(b)
= Ti[k] +

εT
N2

∑
m∈N (i)

αi,m

(
km−1∑

l=km−N

(Tm[l]− Ti[l])

)

+
εT
N2

 ∑
m∈N (i)

αi,mΩm [k′N−1]−Ωi [k′N− 1]

 (25)

where (a) follows assuming that the propagation delay qi,m
is fixed over an update period; and in (b) we used the fact
that

∑
m∈N (i) αi,m = 1. Note that even if the period is

synchronized across the times km−N, km−N+1, . . . , km−1,
i.e., Tm[l] = Ti[l], l = km−N, km−N+ 1, . . . , km − 1 then
still

Ti[k+1]=Ti[k]+
εT
N

 ∑
m∈N (i)

αi,mΩm[k′N−1]−Ωi[k
′
N−1]

 .

Let k′′l denote the time at which node l transmitted in the
cycle of N transmissions whose last time instant is k′N − 1

(i.e., the cycle preceding that to which km belongs). Then, we
can write

Ωm[k′N − 1] = εφ
∑

l∈N (m)

αm,l ·∆(m)
φ [l]

= εφ
∑

l∈N (m)

αm,l ·
(
φl[k

′′
l ] + qm,l − φm[k′′l ]

)
.

Substituting this into the expression for Ti[k + 1] we obtain

Ti[k + 1]

= Ti[k] +
εT
N2

( ∑
m∈N (i)

αi,mεφ
∑

l∈N (m)

αm,l · (φl[k′′l ]+qm,l−φm[k′′l ])

− εφ
∑

v∈N (i)

αi,v ·∆(i)
φ [v]

)

= Ti[k] +
εT εφ
N2

( ∑
m∈N (i)

αi,m

( ∑
l∈N (m)

αm,l ·
(
φl[k

′′
l ]+qm,l

− φm[k′′l ]
)
−∆

(i)
φ [m]

))

= Ti[k] +
εT εφ
N2

( ∑
m∈N (i)

αi,m

( ∑
l∈N (m)

αm,l ·
(
φl[k

′′
l ] + qm,l

− φm[k′′l ]
)
−(φm[k′′m]+qi,m−φi[k′′m])

))
.

Note that even if all clock phases are synchronized at a given
instant, the period would drift, i.e., substituting φl[k] = φm[k]
for all l,m, k in a certain cycle, we obtain

Ti[k+1] = Ti[k]+
εT εφ
N2

∑
m∈N (i)

αi,m

 ∑
l∈N (m)

αm,l · qm,l−qi,m

.
From the derivation above it is evident that even if all the
clocks are synchronized, updating the phase and the period
simultaneously will cause the periods to become unsynchro-
nized.

REFERENCES

[1] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks:
A survey,” IEEE Netw., vol. 18, no. 4, pp. 45–50, Jul. 2004.

[2] A. K. Karthik and R. S. Blum, “Recent advances in clock synchro-
nization for packet-switched networks,” Found. Trends Signal Process.,
vol. 13, no. 4, pp. 360–443, 2020.

[3] IEEE Standard for Local and Metropolitan Area Networks-Timing and
Synchronization for Time-Sensitive Applications in Bridged Local Area
Networks, Standard 802.1AS-2011, 2011.

[4] R. Pigan and M. Metter, Automating With PROFINET: Industrial Com-
munication Based on Industrial Ethernet. Hoboken, NJ, USA: Wiley,
2008.

[5] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz, “Distributed
synchronization in wireless networks,” IEEE Signal Process. Mag.,
vol. 25, no. 5, pp. 81–97, Sep. 2008.

[6] E. Koskin, D. Galayko, O. Feely, and E. Blokhina, “Generation of a
clocking signal in synchronized all-digital PLL networks,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 65, no. 6, pp. 809–813, Jun. 2018.

[7] R. T. Rajan and A.-J. van der Veen, “Joint ranging and clock syn-
chronization for a wireless network,” in Proc. 4th IEEE Int. Workshop
Comput. Adv. Multi-Sensor Adapt. Process. (CAMSAP), Dec. 2011,
pp. 297–300.

[8] X. Huan, W. Chen, T. Wang, H. Hu, and Y. Zheng, “A one-way time syn-
chronization scheme for practical energy-efficient LoRa network based
on reverse asymmetric framework,” IEEE Trans. Commun., vol. 71,
no. 11, pp. 6468–6481, Nov. 2023.

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 



ZINO et al.: DISTRIBUTED CLOCK PHASE AND FREQUENCY SYNCHRONIZATION IN HD TDMA NETWORKS 14363

[9] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time syn-
chronization using reference broadcasts,” in Proc. 5th Symp. Operating
Syst. Design Implement. (OSDI), vol. 36, Boston, MA, USA, Dec. 2002,
pp. 147–163.

[10] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The flooding time
synchronization protocol,” in Proc. 2nd Int. Conf. Embedded Netw.
sensor Syst., Nov. 2004, pp. 39–49.

[11] E. Abakasanga, N. Shlezinger, and R. Dabora, “Unsupervised deep-
learning for distributed clock synchronization in wireless networks,”
IEEE Trans. Veh. Technol., vol. 72, no. 9, pp. 12234–12247, Sep. 2023.

[12] O. Simeone and U. Spagnolini, “Distributed time synchronization
in wireless sensor networks with coupled discrete-time oscillators,”
EURASIP J. Wireless Commun. Netw., vol. 2007, no. 1, pp. 1–13, Jun.
2007.

[13] W. Jaafar, S. Naser, S. Muhaidat, P. C. Sofotasios, and
H. Yanikomeroglu, “Multiple access in aerial networks: From
orthogonal and non-orthogonal to rate-splitting,” IEEE Open J. Veh.
Technol., vol. 1, pp. 372–392, 2020.

[14] J. Zhu and S. S. Kia, “A SPIN-based dynamic TDMA communication
for a UWB-based infrastructure-free cooperative navigation,” IEEE
Sensors Lett., vol. 4, no. 7, pp. 1–4, Jul. 2020.

[15] J. C. López-Ardao, R. F. Rodrı́guez-Rubio, A. Suárez-González,
M. Rodrı́guez-Pérez, and M. E. Sousa-Vieira, “Current trends on green
wireless sensor networks,” Sensors, vol. 21, no. 13, p. 4281, 2021.

[16] L. Xu, S. Sun, K. V. Mishra, and Y. D. Zhang, “Automotive FMCW
radar with difference co-chirps,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 59, no. 6, pp. 8145–8165, Dec. 2023.

[17] P. Chatterjee, J. A. Nanzer, and M. Yan, “Frequency consensus for
distributed antenna arrays with half-duplex wireless coordination,” in
Proc. IEEE Int. Symp. Antennas Propag. North Amer. Radio Sci.
Meeting, Jul. 2020, pp. 1585–1586.

[18] J. Du and Y.-C. Wu, “Distributed clock skew and offset estimation
in wireless sensor networks: Asynchronous algorithm and conver-
gence analysis,” IEEE Trans. Wireless Commun., vol. 12, no. 11,
pp. 5908–5917, Nov. 2013.

[19] M. K. Maggs, S. G. O’Keefe, and D. V. Thiel, “Consensus clock
synchronization for wireless sensor networks,” IEEE Sensors J., vol. 12,
no. 6, pp. 2269–2277, Jun. 2012.

[20] D. Märzinger, B. Etzlinger, P. Peterseil, and A. Springer, “Time-
multiplexed AoA estimation and ranging,” in Proc. Int. Conf. Local-
ization GNSS (ICL-GNSS), 2023, pp. 1–7.

[21] R. Fan, W. Liu, M. Li, and Z. Chai, “Clock offset and skew estimation
based on correlation detection with one-way dissemination in wireless
sensor networks,” in Proc. 10th Int. Workshop Signal Design Appl.
Commun. (IWSDA), Aug. 2022, pp. 1–5.

[22] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1,
pp. 215–233, Jan. 2007.

[23] A. Giridhar and P. R. Kumar, “Distributed clock synchronization over
wireless networks: Algorithms and analysis,” in Proc. 45th IEEE Conf.
Decis. Control, Dec. 2006, pp. 4915–4920.

[24] I. Zino, R. Dabora, and H. V. Poor, “Model-based learning for network
clock synchronization in half-duplex TDMA networks,” in Proc. IEEE
Int. Conf. Commun., Jun. 2024, pp. 1618–1624.

[25] P. Palà-Schönwälder, J. Bonet-Dalmau, A. López-Riera, F. X. Moncunill-
Geniz, F. del Águila-López, and R. Giralt-Mas, “Superregenerative
reception of narrowband FSK modulations,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 62, no. 3, pp. 791–798, Mar. 2015.

[26] N. Naik, “LPWAN technologies for IoT systems: Choice between ultra
narrow band and spread spectrum,” in Proc. IEEE Int. Syst. Eng. Symp.
(ISSE), Oct. 2018, pp. 1–8.

[27] A. Korman and R. Vacus, “Distributed alignment processes with sam-
ples of group average,” Trans. Control Netw. Syst., vol. 10, no. 2,
pp. 960–971, Jun. 2023.

[28] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proc. IEEE, vol. 108, no. 4, pp. 485–532, Apr. 2020.

[29] G. Garrigos and R. M. Gower, “Handbook of convergence theorems for
(stochastic) gradient methods,” 2023, arXiv:2301.11235.

[30] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-IID data,” in Proc. 8th Int. Conf. Learn. Represent.
(ICLR), Apr. 2019.

[31] R. O. Saber and R. M. Murray, “Consensus protocols for networks
of dynamic agents,” in Proc. Amer. Control Conf., vol. 2, Jun. 2003,
pp. 951–956.

[32] H. Y. Kim, “Modeling and tracking time-varying clock drifts in wireless
networks,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA,
USA, Aug. 2014.

[33] D. Tulone, “A resource-efficient time estimation for wireless sensor
networks,” in Proc. Joint Workshop Found. Mobile Comput., Oct. 2004,
pp. 52–59.

[34] J.-S. Kim, J. Lee, E. Serpedin, and K. Qaraqe, “Robust clock synchro-
nization in wireless sensor networks through noise density estimation,”
IEEE Trans. Signal Process., vol. 59, no. 7, pp. 3035–3047, Jul. 2011.

[35] D. Gerosa, R. Hou, V. Björk, U. Gustavsson, and T. Eriksson,
“Autoregressive stochastic clock jitter compensation in analog-to-digital
converters,” 2025, arXiv:2505.05030.

[36] M. E. Frerking, Crystal Oscillator Design and Temperature Compensa-
tion. New York, NY, USA: Van Nostrand Reinhold Company, 1978.

[37] J. R. Vig, “Quartz crystal resonators and oscillators for frequency control
and timing applications: A tutorial,” Electron. Technol. Devices Lab,
Fort Monmouth, NJ, USA, Tech. Rep. SLCET-TR-88-1 (Rev. 6.1), May
1993.

Itay Zino received the B.Sc. degree from the Sami
Shamoon College of Engineering (SCE), Israel, in
2020, and the M.Sc. degree from the Ben-Gurion
University of the Negev, Israel, in 2024, where
he is currently pursuing the Ph.D. degree. His
research interests include signal processing for com-
munications, algorithm design, and electro-optical
communications. In addition, he serves as a consul-
tant in these fields for high-tech companies.

Ron Dabora (Senior Member, IEEE) received the
B.Sc. and M.Sc. degrees in electrical engineer-
ing from Tel-Aviv University in 1994 and 2000,
respectively, and the Ph.D. degree in electrical engi-
neering from Cornell University, USA, in 2007.
From 1994 to 2000, he was with the Ministry of
Defense of Israel, and from 2000 to 2003, he was
with the Algorithms Group, Millimetrix Broadband
Networks, Israel. From 2007 to 2009, he was a
Post-Doctoral Researcher with the Department of
Electrical Engineering, Stanford University, USA.

Since 2009, he has been with the School of Electrical and Computer Engi-
neering, Ben-Gurion University of the Negev, Israel, where he is currently an
Associate Professor. During the academic year 2022–2023, he was a Visiting
Fellow at the Department of Electrical Engineering, Princeton University,
USA. His research interests include network information theory, wireless
communications, power line communications, and machine learning. He
served as a TPC Member in international conferences, including WCNC,
PIMRC, and ICC. From 2012 to 2014, he was an Associate Editor of IEEE
SIGNAL PROCESSING LETTERS and from 2014 to 2019, he was a Senior
Area Editor of IEEE SIGNAL PROCESSING LETTERS.

H. Vincent Poor (Life Fellow, IEEE) received the
Ph.D. degree in EECS from Princeton University in
1977. From 1977 to 1990, he was on the faculty
of the University of Illinois at Urbana–Champaign.
Since 1990, he has been on the faculty at Princeton
University, where he is currently the Michael Henry
Strater University Professor. From 2006 to 2016, he
was the Dean of Princeton’s School of Engineering
and Applied Science. He has also held visiting
appointments at several other universities, including
most recently at Berkeley and Caltech. His research

interests include information theory, machine learning, and network science,
and their applications in wireless networks, energy systems, and related
fields. Among his publications in these areas is the book Machine Learning
and Wireless Communications (Cambridge University Press, 2022). He is a
member of the National Academy of Engineering and the National Academy
of Sciences and is a foreign member of the Royal Society and other national
and international academies. He received the IEEE Alexander Graham Bell
Medal in 2017.

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 30,2025 at 00:57:12 UTC from IEEE Xplore.  Restrictions apply. 


